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SOME INVERSE PROBLEMS OF DEFORMATION

AND FRACTURE OF PHYSICALLY NONLINEAR

INHOMOGENEOUS MEDIA

UDC 539.3I. Yu. Tsvelodub

The following two types of physically nonlinear inhomogeneous media are considered: linear-elastic
plane with nonlinear-elastic elliptic inclusions and linear-viscous plane with elliptic inclusions from
a material that possesses nonlinear-creep properties. The problem is to determine infinitely distant
loads that produce a required value of the principal shear stress (in the first case) or principal shear-
strain rate (in the second case) for two arbitrary inclusions. Conditions for the existence of solutions
of these problems for incompressible media under plane strains are obtained.
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The present paper is a continuation of the studies [1–3] on modeling the processes of deformation and fracture
of physically nonlinear inhomogeneous media. New inverse problems are formulated for linear-elastic and linear-
viscous planes with nonlinear (e.g., elastoplastic or nonlinear-viscous) elliptic inclusions in which a homogeneous
stress–strain state occurs under the action of loads applied at infinity (provided the distance between the centers
of any two inclusions is much greater than their size [1]).

1. Linear-Elastic Plane with Nonlinear-Elastic Inclusions. We consider an isotropic elastic plane S
with various physically nonlinear elliptic inclusions (PNEI) located far from one another so that the interaction
between the stress–strain states of PNEI can be ignored. We choose two arbitrary inclusions and denote them by S∗k .
Each inclusion is referred to the coordinate system Okx1kx2k in which the equation of the boundary Lk separating
S∗k from S has the form x2

1ka
−2
0k + x2

2kb
−2
0k = 1 (a0k ≥ b0k, where k = 1, 2). We assume that the inhomogeneous

medium is incompressible and undergoes plane strain under the action of remote stresses whose principal values are
denoted by N1 and N2, and the angle between the first principal axis and the Okx1k axis is denoted by αk. The
region S obeys Hooke’s law [1]

4µε22 = −4µε11 = σ22 − σ11, 2µε12 = σ12,

where σij and εij are the components of stresses and strains in an arbitrary coordinate system and µ is the shear
modulus. (If the latter is replaced by the corresponding Volterra operator, the relations given above describe the
plane strain of a linear viscoelastic incompressible medium [1]).

Following [1], we assume that the kth PNEI is isotropic and nonlinear-elastic (or obeys the deformation
theory of plasticity). In the coordinate system Okx1kx2k, its constitutive relations have the form

ε∗22k = −ε∗11k = Fk(τ∗k )(σ∗22k − σ∗11k)/2,
(1.1)

ε∗12k = Fk(τ∗k )σ∗12k, 2τ∗k = [(σ∗22k − σ∗11k)2 + 4σ∗212k]1/2 (k = 1, 2),

where Fk(τ∗k ) > 0 is a specified function and τ∗k is the principal shear stress.
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Since the inclusions do not interact with one another, the stress–strain relations in the kth PNEI and at
infinity (provided the rotation at infinity satisfies the condition ε∞ = 0) take the following form [1]:

µ(m0kC̄
∗
k + D̄∗k) = m0kA

∗
k +B∗k − 2(m0kΓ + Γ′k),

µ(C̄∗k +m0kD̄
∗
k) = −(A∗k +m0kB

∗
k) + 2Γ,

2A∗k = σ∗11k + σ∗22k, 2B∗k = σ∗22k − σ∗11k + 2iσ∗12k,
(1.2)

C∗k = ε∗11k + ε∗22k + 2iε∗k, D∗k = ε∗11k − ε∗22k + 2iε∗12k,

m0k = (a0k − b0k)/(a0k + b0k), 4Γ = N1 +N2,

Γ′k = Γ′0e−2iαk , 2Γ′0 = N2 −N1 (k = 1, 2).

Here ε∗k is the rotation in S∗k . We note that the stress–strain state in S∗k is uniform, i.e., A∗k, B∗k , C∗k , and D∗k are
independent of x1k and x2k (k = 1, 2).

We formulate the problem similar to that considered in [1]: Is it possible to choose the stress–strain state at
infinity, i.e., the values of the principal stresses N1 and N2 and the angle α1 (given α1, the value of α2 is determined
uniquely since the angle α = α2−α1 between the axes O1x11 and O2x12 is fixed) in such a manner that the principal
shear stress in each PNEI takes a specified value, i.e., the equalities τ∗k = τ0k hold (τ0k are specified values, k = 1, 2)?

In contrast to [1] where the principal directions of stresses applied at infinity were specified and the orientation
of inclusions (i.e., the angles αk, k = 1, 2, . . .) was varied, we determine the principal directions for N1 and N2 (and
their values) for a specified angle α between the centerlines of two PNEI.

We show that the solution of the problem formulated above exists under certain restrictions. Assuming that
B∗k = τ0keiϕk , as was done in [1], taking into account the fact that relations (1.1) and (1.2) imply the equalities
C∗k = 2iε∗k and D̄∗k = −2Fk(τ∗k )B∗k , and eliminating A∗k and ε∗k from (1.2), we obtain

2Γ′0 cos 2αk = [(1−m2
0k) + βk(1 +m2

0k)]τ0k cosϕk,

−2Γ′0 sin 2αk = [(1 +m2
0k) + βk(1−m2

0k)]τ0k sinϕk, (1.3)

βk = 2µFk(τ0k) (k = 1, 2), α2 = α1 + α.

Relations (1.3) form a system of four equations for Γ′0, α1, ϕ1, and ϕ2. In [1], the following necessary
conditions for which the system can have solutions were obtained:

ak − |bk| ≤ 2|Γ′0| ≤ ak + |bk|,

ak ≡ (1 + βk)τ0k > 0, bk ≡ m2
0k(1− βk)τ0k, ak > |bk|.

(1.4)

These conditions follow from the fact that the absolute value of cos 2ϕk that can be obtained from (1.3) cannot
exceed unity.

Inequalities (1.4) are satisfied for k = 1, 2 if the following inequality holds: max
k=1,2

(ak−|bk|) ≤ min
k=1,2

(ak+ |bk|).

Analyzing all variants of this inequality, we find that a1−|b1| ≤ a2 + |b2| and a2−|b2| ≤ a1 + |b1|, which is equivalent
to the condition |a1 − a2| ≤ |b1|+ |b2|. (1.5)

Eliminating the quantities ϕ1 and ϕ2 from (1.3), we obtain

(2Γ′0)−2 =
sin2 2α1

(a1 + b1)2
+

cos2 2α1

(a1 − b1)2
=

sin2 2(α1 + α)
(a2 + b2)2

+
cos2 2(α1 + α)

(a2 − b2)2
. (1.6)

For tan 2α1, the last equality yields the quadratic equation

(A2 cos2 2α+B2 sin2 2α−A1) tan 2 2α1 + 2(A2 −B2) sin 2α cos 2α tan 2α1

+A2 sin2 2α+B2 cos2 2α−B1 = 0, (1.7)

Ak = (ak + bk)−2, Bk = (ak − bk)−2 (k = 1, 2),

whose discriminant D is given by
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D = A sin2 2α+B, A = (A1 −B1)(A2 −B2), B = (A1 −A2)(B2 −B1). (1.8)

We note that the functions A and B given by (1.7) and (1.8) satisfy the following equivalence conditions (since
ak > |bk|, where k = 1, 2):

A > 0 (< 0) ⇐⇒ b1b2 > 0 (< 0); (1.9)

B ≥ 0 (≤ 0) ⇐⇒ |b1 − b2| − |a1 − a2| ≥ 0 (≤ 0); (1.10)

B +A ≥ 0 (≤ 0) ⇐⇒ |b1 + b2| − |a1 − a2| ≥ 0 (≤ 0). (1.11)

For tan 2α1, Eq. (1.7) has real roots if D ≥ 0. This condition is satisfied in the following cases:
1) For all values of sin 2α if A > 0 and B ≥ 0, i.e., if according to (1.9) and (1.10)

b1b2 > 0, |a1 − a2| ≤ |b1 − b2| = ||b1| − |b2||

[condition (1.5) holds since ||b1| − |b2|| ≤ |b1|+ |b2|], or if A < 0, B > 0, and A+B ≥ 0 (since D ≥ A+B), which,
by virtue of (1.9)–(1.11), is equivalent to the inequalities

b1b2 < 0, |a1 − a2| ≤ |b1 + b2| = ||b1| − |b2||;

2) If the inequality

sin2 2α ≥ −B
A

=
[(a2 + b2)2 − (a1 + b1)2][(a2 − b2)2 − (a1 − b1)2]

16a1b1a2b2

holds for A > 0 and B < 0, i.e., b1b2 > 0 and |a1 − a2| > |b1 − b2| = ||b1| − |b2||. This is possible if −B/A ≤ 1, i.e.,
A+B ≥ 0 or |a1 − a2| ≤ |b1 + b2| = |b1|+ |b2| [see (1.11)], which coincides with (1.5);

3) If the inequalities sin2 2α < −B/A < 1 are satisfied for A < 0, B > 0, and A+B < 0, i.e., b1b2 < 0 and
||b1| − |b2|| = |b1 + b2| < |a1 − a2| < |b1 − b2| = |b1|+ |b2|.

Thus, if

|a1 − a2| ≤ ||b1| − |b2||, (1.12)

then D ≥ 0 regardless of sign (b1b2).
If

||b1| − |b2|| < |a1 − a2| < |b1|+ |b2|, (1.13)

then D ≥ 0 for sin2 2α ≥ −B/A (for A > 0) or for sin2 2α ≤ −B/A (for A < 0).
Once the values of α1 are found, the quantity |Γ′0| and the angles ϕk (k = 1, 2) are determined from (1.6)

and (1.3), respectively. As is shown in [1], if the inequality

[τβk(τ)]′ ≥ 0 (k = 1, 2) (1.14)

(the prime denotes differentiation with respect to τ), which follows from the stability condition for the constitutive
equations (1.1), holds and the values of Γ′0 and αk are specified, then τk and ϕk (−π ≤ ϕk ≤ π) are determined
uniquely, i.e., only the values of τ∗k = τ0k (k = 1, 2) correspond to the values of Γ′0 and αk determined by solving
the problem formulated above.

We consider some particular cases where the solution of Eq. (1.7) for α1 exists. Let both PNEI have the
same properties, i.e., Fk = F (k = 1, 2) in (1.1), and it is required that the principal shear stresses occurring in
them are equal: τ01 = τ02. In this case, we have a1 = a2 and inequality (1.12) is satisfied for both m01 = m02 and
m01 6= m02; hence, the solution exists for all α, i.e., for all orientations of the inclusions relative to each other.

If τ01 6= τ02 and m01 = m02 = m0, inequality (1.12) fails. Indeed, if inequality (1.14) is satisfied, both
functions [1 + β(τ)±m2

0(1− β(τ))]τ , where β(τ) = 2µF (τ), are increasing functions and, hence, for τ01 > τ02, we
obtain a1 > a2, a1 ± b1 > a2 ± b2. This implies that a1 − a2 > b2 − b1, a1 − a2 > b1 − b2, i.e., |a1 − a2| = a1 − a2 >

|b1 − b2| ≥ ||b1| − |b2||. In a similar manner, we obtain |a1 − a2| > ||b1| − |b2|| for τ02 > τ01. Thus, in this case,
the solution for α1 exists if the second inequality (1.13) and the above-mentioned restrictions imposed on the value
of α are satisfied.

2. Linear-Viscous Plane with Nonlinear-Viscous Inclusions. We formulate the problem similar to
that considered above for an isotropic linear-viscous plane with nonlinear-viscous elliptic inclusions (NVEI) assuming
that the distance between the centers of the inclusions is much greater than their size. We ignore the elastic strains
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of this inhomogeneous medium and assume that the medium is incompressible and subjected to plain strain. In the
viscous region S, we obtain the following relations similar to Hooke’s law relations (see Sec. 1):

4µη22 = −4µη11 = σ22 − σ11, 2µη12 = σ12.

Here ηij are the strain-rate components and µ is the viscosity coefficient.
We write the constitutive equations for the kth NVEI in the coordinate system Okx1kx2k determined by its

centerlines in the form [2, 3]

η∗22k = −η∗11k =
H∗k
2τ∗k

σ∗22k − σ∗11k

2
, η∗12k =

H∗k
2τ∗k

σ∗12k,

H∗k =
B1kτ

∗nk
k

(1− ωk)qk
, ω̇k =

B2kτ
∗pk
k

(1− ωk)qk
, (2.1)

H∗k = [(η∗22k − η∗11k)2 + 4η∗212k]1/2 (k = 1, 2).

Here η∗ijk are the strain-rate components of the inclusion, H∗k is the principal shear-strain rate, ωk (0 ≤ ωk ≤ 1) is
the damage parameter (ωk = 0 for the undeformed state and ωk = 1 at the moment of fracture), B1k, B2k, nk, pk,
and qk are positive constants, the dot denotes differentiation with respect to time t, and the remaining notation is
the same as in Sec. 1.

Relations (2.1) can be inverted [2]:

σ∗22k − σ∗11k

2
=

2τ∗k
H∗k

η∗22k, σ∗12k =
2τ∗k
H∗k

η∗12k, ω̇k = B0kH
∗γk
k (1− ωk)æk ,

B0k = B2kB
−γk
1k , γk = pk/nk, æk = qk(γk − 1).

(2.2)

Relations (2.1) and (2.2) describe the processes of isothermal creep deformation and fracture of brittle and
viscous materials.

The stress–strain relations in the kth NVEI and at infinity are given by (1.2), where ε∗ijk should be replaced
by η∗ijk (i, j = 1, 2) and ε∗k by ε̇∗k and the quantity µ should be understood as the viscosity coefficient.

The problem is formulated as follows: Is it possible to choose the stress–strain state at infinity, i.e., the
stresses N1 and N2 and the angle α1 such that the principal shear-strain rate in each inclusion takes the required
value, i.e., H∗k = H0k(t)? Here H0k(t) (k = 1, 2) are specified functions of time. For t = 0, the NVEI are not
deformed and, hence, ωk|t=0 = 0 (k = 1, 2).

Relation (1.2) with modifications considered above and relation (2.2) yield the equalities |D̄∗k| = H∗k ,
C∗k = 2iε̇∗k, and B∗k = −τ∗kH

∗−1
k D̄∗k. Setting D̄∗k = H0keiϕk , by analogy with (1.3), we obtain [3]

−2Γ′0 cos 2αk = [(1−m2
0k)τ∗k + µ(1 +m2

0k)H0k] cosϕk,

2Γ′0 sin 2αk = [(1 +m2
0k)τ∗k + µ(1−m2

0k)H0k] sinϕk, (2.3)

τ∗k = [B−1
1k H0k(1− ωk)qk ]1/nk (k = 1, 2), α2 = α1 + α.

System (2.3) for the unknowns Γ′0, α1, ϕ1, and ϕ2 has a solution only if inequalities (1.4) are satisfied with
allowance for the relations

ak = τ∗k + µH0k, bk = m2
0k(τ∗k − µH0k). (2.4)

For the specified functions H0k(t), the quantities τ∗k in (2.3) and (2.4) are found after determination of the
damage parameters ωk by integrating the third group of equations (2.2) under the initial conditions ωk|t=0 = 0
(k = 1, 2).

Proceeding as was done in Sec. 1, we obtain formulas (1.5)–(1.13), in which ak and bk are determined
according to (2.4). In particular, if (1.12) holds, the solution for α1 exists for any angle α between the symmetry
lines of the inclusions; if inequalities (1.13) hold, the restrictions mentioned above are imposed on α.

In [3], we show that, if the values of Γ′0 = Γ′0(t) and αk = αk(t) are specified, the functions H∗k = H∗k(t)
and ϕk = ϕk(t) (−π ≤ ϕk ≤ π) are uniquely determined from (2.2) and (2.3), i.e., only the values of H∗k = H0k

correspond to the values of Γ′0 and αk determined by solving the problem formulated in this section.
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The problem considered can also be interpreted as follows: Is it possible to choose stresses at infinity such
that H∗k = H0k(t) and, hence, the kth inclusion fails in a specified period t∗k (k = 1, 2)? Indeed, the quantities
mentioned above are related by the equality [2, 3]

(1− æk)B0k

t∗k∫
0

H∗γkk dt = 1 (æk < 1),

which follows from the third group of equations (2.2) and conditions ωk|t=0 = 0 and ωk|t=t∗k = 1 (k = 1, 2).
In a particular case where H∗k = const, we obtain

t∗−1
k = (1− æk)B0kH

∗γk
k .

Thus, one can formulate the problem of optimal fracture of two NVEI, i.e., fracture in a specified time t∗k.
In conclusion, the following remark should be made. In [3], the problem similar to that considered above

was formulated for k inclusions whose orientation relative to each other was fixed; the case k > 2 was admissible.
In the formulation proposed in the present paper, however, this is impossible since, as was shown above, setting of
H0k and α for four unknown quantities Γ0, α1, and ϕk (k = 1, 2) yields a closed system of four equations consisting
of first two equalities (2.3), where α2 = α1 + α and k = 1, 2. If a couple of equations corresponding, e.g., to the
case k = 3 are added to the system, the latter becomes overdetermined [six equations for five unknowns Γ0, α1,
and ϕk (k = 1, 2, 3) since α2 and α3 are expressed in terms of α1]. This imposes restrictions on the orientation of
other inclusions, i.e., on the angles αk for k ≥ 3. One can easily show that, in the general case, 2k equations can
be written for 2 + k unknown functions.

This work was partly supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-
00643).
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